
Parity, Sensitivity, and Transformers

Alexander Kozachinskiy
CENIA

alexander.kozachinskyi@cenia.cl

Tomasz Steifer
IPPT PAN

tsteifer@ippt.pan.pl

Przemys law Wa lȩga
Queen Mary University of London

p.walega@qmul.ac.uk

February 5, 2026

Abstract

The transformer architecture is almost a decade old. Despite that, we still have a limited under-
standing of what this architecture can or cannot compute. For instance, can a 1-layer transformer solve
PARITY—or more generally—which kinds of transformers can do it? Known constructions for PARITY
have at least 2 layers and employ impractical features: either a length-dependent positional encoding, or
hardmax, or layernorm without the regularization parameter, or they are not implementable with causal
masking.

We give a new construction of a transformer for PARITY with softmax, length-independent and
polynomially bounded positional encoding, no layernorm, working both with and without causal masking.
We also give the first lower bound for transformers solving PARITY— by showing that it cannot be done
with only one layer and one head.

1 Introduction

Imagine that you are trying to train a neural network—or a related model such as transformer, Graph Neural
Network etc.—on some task and you see that the accuracy oscillates and never reach a reasonable threshold.
Perhaps the model is too big and overfits to the training dataset. Perhaps the model size is alright, but a
rugged loss landscape makes it impossible to find the global minimum using gradient descent methods. But
it may also be the case that model is not expressible enough—there is simply no assignment of the model
weights that would allow it to compute the underlying true hypothesis. Such a scenario is the point of
interest of the expressivity of neural networks (and related models), which is an important area of machine
learning theory.

For instance, take a simple feed-forward neural network (FFN). It is well known that any Boolean function
f : {0, 1}n → {0, 1} can be computed by a sufficiently large FFN with an appropriate activation function.
However, a naive construction of requires the size of the network to grow exponentially with the length of
the input. Clearly, this is not tight for all Boolean functions. Understanding which model properties (like
size or specific activation function) are required to express a given function can guide model design and help
explain failure in training.

In this paper we study expressivity of transformers with respect to one specific task, namely, the PARITY
task. Let us define PARITY as a function which assigns 0 to all binary words with an even number of ones
and 1 to all the rest. PARITY in an exemplary task that has been studied both in theoretical computer
science (e.g. in the context of circuit complexity (Furst et al., 1984; Khrapchenko, 1971)) and in machine
learning theory (see e.g. Regev (2009)). One of the reasons why PARITY got considerable attention is
because, in a sense, it is the most sensitive Boolean function—flipping a single bit always changes the output
of the function.

1

In the context of transformers, PARITY was also one of the first formal task which expressivity has been
studied. Hahn (2020) considered a simplified model of transformer with unique hard attention (UHAT) and
used random restriction method to prove that PARITY is not computable by a constant-depth UHAT trans-
former. Later Hao et al. (2022) strenghten this result by showing that any family of functions computable by
a constant-depth UHAT transformer is in the class AC0—which is known to not contain PARITY. Although
concerned with a simplified model, these results suggested some explanation to why transformers struggle
to generalize on tasks such as PARITY Bhattamishra et al. (2020).

Meanwhile, Chiang and Cholak (2022) gave an explicit construction of a 2-layer transformer with soft
attention capable of computing PARITY. This result showed a stark contrast between hard and soft attention
mechanisms, albeit with a caveat. The construction of Chiang and Cholak required a positional encoding
i 7→ i/n that depends not only on the position i but also on the input length n. This differs from the standard
approaches because transformers are usually run on inputs of varying depth. In fact, in NLP transformers
often employ causal masking, where the i-th position can only access information from the positions with
smaller indices (and so, most positions do not ’see’ the input length).

This motivated Kozachinskiy and Steifer (2025) to give an alternative 3-layer construction based on
a length-independent positional encoding. However, their construction works just in the the full-attention
model and crucially requires that each token accesses the information from all the other positions. Moreover,
they gave no bound on how fast their positional encoding has to grow.

Yang et al. (2025) gave yet another 2-layer construction that works with causal masking and no positional
encoding (except a specialized beginning-of-sequence token). That being said, this construction required two
features that differ from standard practice—hard attention and layer normalization with the regularization
parameter ε set to zero. These design choices cannot be used in actual learning via standard gradient
methods.

Interestingly, it remains open whether PARITY can be computed by a transformer in just one layer. All
the constructions mentioned before use at least 2 layers. In general, proving a lower bound on the number
of transformer layers needed to compute some task is hard, especially for the full-attention model (Chen
et al., 2024) but some techniques for single layer transformers exist. Sanford et al. (2023) introduced a
communication complexity technique (which works under the assumption of logarithmic precision). More
recently, Kozachinskiy et al. (2025) gave a new technique, based on a notion of the Split-VC dimension,
which works even for transformers with infinite precision. Both techniques require finding a partition of the
input bits such that either (a) the communication complexity of the resulting problem, where Alice gets bits
from one part of the partition and Bob from the other, is large; or (b) the VC dimension of the concept class,
obtained by considering bits from one part of the partition as inputs and from the other as parameters, is
large. For PARITY, however, both quantities are constant for any partition, making existing technique not
applicable to this function.

Our results. We give a partial solution to this open problem and show that no 1-layer transformer with
only 1 head can solve PARITY. Our argument relies on the notion of average sensitivity of a function f , which
is defined as the number of input positions such that flipping them changes the value of f , averaged over
all input words of the given length. In particular, we show that a function computed by a transformer with
a single layer and single head, has the average sensitivity of O(

√
n). We contrast this with the observation

that the average sensitivity of the PARITY grows linearly with the input length.
Our second technical contribution is a new construction of 4-layer transformer that computes PARITY,

which improves on the existing constructions in the following aspects: it uses soft attention, works for both
full-attention and causal masking architecture, uses only length-independent positional encoding and no
layer normalization. Furthermore, its positional encoding is polynomially bounded, which makes it possible
to implement on input lengths of practical size.

Related work. The expressive power of the transformer architectures (Vaswani et al., 2017) is heavily
studied in the literature. Existing results analyse a wide range of settings leading to a rich landscape of
expressiveness results. Some of the main architectural choices include different positional encodings; soft

2

attention or its idealizations: unique hard attention (UHAT) and averaging hard attention (AHAT); number
of layers; the presence or absence of causal masking; the use or omission of layer normalization; finite versus
infinite numerical precision; architectures with both encoder and decoder components or only one of them;
and, more recently, the chain-of-thought setting.

Apart of the papers already mentioned, there exists a considerable collection of technical results on
transformer expressivity. As already observed by Hao et al. (2022), transformers equipped with average
hard attention (AHAT) can compute tasks outside AC0 (such as MAJORITY), which shows a separation
between different hard attention variants. Merrill et al. (2022) showed that AHAT transformers can solve
only languages recognized by families of constant-depth threshold circuits (TC0). Angluin et al. (2023) and
Yang et al. (2024a) established a precise characterization showing that masked hard-attention transformers
recognize exactly the star-free languages, which are equivalent to languages definable in first-order logic with
linear order, linear temporal logic, and counter-free (aperiodic) automata. This connection to well-studied
formal language classes provided deep insights into transformer limitations. A complementary result was
obtained by Barcelo et al. (2023) who showed that UHAT cannot recognize some languages in AC0, even
with unbounded positional encoding. They also provided an upper bound, showing that such transformer
can recognize any language definable in the first-order logic with arbitrary unary numerical predicates.

The exact relation between soft attention and its hard variants is not fully understood. For example,
it is not known whether the soft attention can simulate UHAT or AHAT under the bounded precision
assumption. Yang et al. (2024b) demonstrated that soft attention mechanisms can provably simulate hard
attention if unbounded position encoding is allowed. This observation is significant as it suggests that
some theoretical expressivity results for UHAT and AHAT transformers may transfer to more realistic
architectures. For softmax attention models, the theoretical understanding is more limited and depends
critically on precision assumptions. Merrill and Sabharwal (2023) proved that log-precision transformers
have restricted expressivity, showing a fundamental trade-off between parallelism and precision. Chiang
et al. (2023) proved tighter bounds on transformer expressivity by analysing the role of layer normalization
and showing that even with polynomial precision, certain counting tasks remain difficult for bounded-depth
transformers.

Sensitive functions in the context of transformers has been studied by Hahn and Rofin (2024). They
have shown that, under certain assumptions, if a transformer computes a highly sensitive function, then the
transformer itself is highly sensitive to random perturbation of its parameters. This partially explains why
it is sometimes hard to reach a global minimum of the loss landscape when learning functions like parity.

The role of chain-of-thought setting significantly increases expressiveness of transformers. Wei et al.
(2022) empirically demonstrated the effectiveness of chain-of-thought prompting. Liu et al. (2024) proved
that that k chain-of-thought steps allow solving problems requiring k-fold function composition. Merrill
and Sabharwal (2024) characterized the expressive power of AHAT transformers with chain-of-thought,
showing that polynomial-length chains allow transformers to simulate polynomial-time computation under
certain assumptions. Feng and Chen (2024) showed that transformers struggle with tasks requiring global
coordination and proved that inductive scratchpad techniques can overcome some of these limitations. Recent
work of Bavandpour et al. (2025) gave lower bounds on the number of chain-of-thought steps needed for
UHAT transformers to solve certain tasks like PARITY. This complements the result of Barcelo et al. (2025)
which gave exact characterization between the number of chain-of-thought steps needed for 1-layer UHAT
transformer and Ehrenfeucht-Haussler tree rank.

Organization of the paper. Section 2 introduces all necesary definitions, related to transformers. In
Section 3, the sensitivity lower bound on 1-layer 1-head transformers is established. Finally, Section 4 gives
our new construction of a transformer for parity.

2 Transformers

Attention layers. Transformers are built upon attention layers. We consider two kinds of attention layers
– full-attention and causually masked.

3

Definition 1. A d-dimensional H-head full-attention layer is a function L : (Rd)∗ → (Rd)∗, given by

� H query matrices Q(k) ∈ Rd×d, H key matrices K(k) ∈ Rd×d, and H value matrices V (k) for k =
1, . . . ,H,

� a matrix WO ∈ Rd×(dH) (parameters of the linear transformation, mixing representations from different
heads).

� two matrices W1,W2 ∈ Rd×d and two vectors b1, b2 ∈ Rd (parameters of the position-wise feed-forward
network in the end fo the layer).

Given an input sequence of vectors (α1, . . . , αn) ∈ (Rd)n, the output sequence of vectors (β1, . . . , βn) =
L(α1, . . . , αn) ∈ (Rd)n is computed in the following steps:

1. for each k = 1, . . . ,H, and for i, j = 1, . . . , n, compute the attention weight of the j-th position to
the i-th position in the k-th head as:

L
(k)
ij = ⟨K(k)αi, Q

(k)αj⟩/
√
d (1)

2. for each head k = 1, . . . ,H and position j = 1, . . . , n, define the value of the k-th head in the j-th
position as:

h
(k)
j =

n∑
i=1

exp{Lij}V (k)αi

n∑
i=1

exp{Lij}
∈ Rd; (2)

3. for each position j = 1, . . . , n, combine the values of all the heads in this position via:

hj = WO


h
(1)
j

h
(2)
j
...

h
(H)
j

 ; (3)

4. finally, for j = 1, . . . ,m define the output in the j-th position as the result of applying a feed-forward
network, given by matrices W1,W2 and bias vectors b1, b2, to hj + αj.

βj = W2 · ReLU (W1(hj + αj) + b1) + b2 ∈ Rd. (4)

Recall that ReLU((x1, . . . , xd)) = (max{0, x1}, . . . ,max{0, xd}).

Causally masked attention layers are defined similarly, except that (2) is replaced by:

h
(k)
j =

j∑
i=1

exp{Lij}V (k)αi

j∑
i=1

exp{Lij}
∈ Rd; (5)

(the sum is only up to j, that is, the position j does not see positions ahead of it).

4

Transformers. In practice, transformers are defined as functions from sequences of tokens (elements of
some finite alphabet) to probability distributions of tokens. Given a prompt (an input sequence of tokens), a
transformer computes a distribution and then generates a token from it. We consider a deterministic version
of transformers where instead of generation, we simply take as an output the token with the maximal
probability.

Definition 2. An C-layer H-head d-dimensional full-attention transformer over a finite set V (a “vocabu-
lary” whose elements are called “tokens”), containing a special symbol ⊥, is a function T : V∗ → V, given
by

� C H-head d-dimensional full-attention layers L1, . . . , LC ;

� the input embedding E : V × N2 → Rd;

� the output distribution matrix W ∈ RV×d (transforming d-dimensional —vectors into vectors whose
coordinates are indexed by tokens).

Given a sequence of tokens x1 . . . xn ∈ Vn, the output token y = T (x1, . . . , xn) is computed in the following
steps:

1. we transform the input sequence of tokens into a sequence of vectors via the input embedding:

α1 = E(x1, 1, n), . . . , αn = E(xn, n, n); (6)

2. we apply the sequence of attention layers to this sequence:

(β1, . . . , βn) = LC ◦ . . . ◦ L1(α1, . . . , αn); (7)

3. we transform the vector in the last position after the last layer into a vector in RV :

µ = softmax(Wβn). (8)

4. finally, we define:
y = T (x1, . . . , xn) := arg max

x∈V
µx. (9)

If there are multiple tokens, reaching the maximum, we set T (x1, . . . , xn) = ⊥.

We say that the input embedding E: V × N2 → Rd is of the standard form if it can be written as
E(x, i,N) = TE(x) + PE(i, n), for x ∈ V, i, n ∈ N amd some functions TE: V → {0, 1}d (token embed-
ding) and PE: N2 → Rd (positional encoding). The positional encoding function PE: N2 → Rd is length-
independent if PE(i, n) depends just on the first argument, that is, if PE(i, n) = g(i) for some g : N → Rd

and all i, n ∈ N.

Definition 3. A transformer T computes an infinite sequence of Boolean functions {fn}n∈N, where fn : {0, 1}n →
{0, 1} for each n, if the vocabulary of T includes symbols 0, 1, and if

T (x) = fn(x) ∀n ∈ N ∀x ∈ {0, 1}n.

By PARITY we mean the sequence of functions {x1 ⊕ . . .⊕ xn}∞n=1.

5

3 Sensitivity Lower Bound

Let f : {0, 1}n → {0, 1}. Its sensitivity at input x ∈ {0, 1}n, denoted by sx(f), is the number of input
positions i ∈ {1, . . . , n} such that flipping xi changes the value of f(x). The average sensitivity of f is
defined as:

as(f) =
∑

x∈{0,1}n

sx(f)/2n. (10)

Theorem 1. Assume that a sequence of Boolean functions {fn}∞n=1 is computable by a 1-layer 1-head
transformer. Then as(fn) = O(

√
n) as n → ∞.

Note that for 1-layer transformers, there is no difference between the full attention and causally-masked
attention models. In the last position, where the output token is computed, we attend all positions in both
models. And with just a single layer, the computation of attention in other positions is not affecting the
result yet.

of Theorem 1. Let f0
n, f

1
n : {0, 1}n−1 → {0, 1} be the results of two possible fixations of the last input bit to

fn:
f0
n(x) = fn(x0), f1

n(x) = fn(x1)

for x ∈ {0, 1}n−1. It is enough to show that as(f0
n) = O(

√
n) and as(f1) = O(

√
nn). Indeed, for x ∈

{0, 1}n−1, we have:
sx0(fn) ≤ sx(f0

n) + 1, sx1(fn) ≤ sx(f1
n) + 1,

and hence:

as(fn) =
∑

x∈{0,1}n

sx(fn)/2n =
∑

x∈{0,1}n−1

sx0(fn)/2n +
∑

x∈{0,1}n−1

sx1(fn)/2n

≤
∑

x∈{0,1}n−1

(sx(f0
n) + 1)/2n +

∑
x∈{0,1}n−1

(sx(f1
n) + 1)/2n

=
as(f0

n) + as(f1
n)

2
+ 1.

We now show that as(f0
n) = O(

√
n), the argument for the bound as(f1

n) = O(
√
n) is similar. We take

a 1-layer, 1-head transformer, computing {fn}, assuming the last input bit xn is fixed to 0. Let d be the
dimension of this transformer.

Below we use a well-known fact that the theory of reals with addition and order (R,+, <) admits a
quantifier elimination (Ferrante and Rackoff, 1975). We assume that the language contains all real constants
(it still admits a quantifier elimination as we simply can replace all occurrences of constants by fresh free
variables, eliminate quantifiers, and then substitute back constants in place of fresh free variables).

Lemma 1. Assume there is a 1-layer 1-head transformer, computing {fn}∞n=1. There exists a quantifier-free
formula Φ in the interpretation (R,+, <) with d+ 1 free variables such that for all n there exists d+ 1 affine
(over R) functions

l0(x1, . . . , xn−1) = c10x1 + . . . + cn−1
0 xn−1 + c0,

...

ld(x1, . . . , xn−1) = c1dx1 + . . . + cn−1
d xn−1 + cd,

such that for any x ∈ {0, 1}n−1, we have f0
n(x) = 1 if and only if Φ(l0(x), . . . , ld(x)) = 1.

Proof. Let hn = WOh
(1)
n and αn = E(0, n, n) be as in (1–4) (we have h

(k)
n just for k = 1 because our

transformer has just 1 head). Denote γn = hn+αn ∈ Rd. Observe that hn depends on the input x ∈ {0, 1}n−1

while αn does not (as the n-th token is fixed to 0). We first show that there exists a quantifier-free formula Ψ

6

in the interpretation (R,+, <) with d free variables such that for all n and x ∈ {0, 1}n−1, we have Ψ(γn) = 1
if and only if f0

n(x) = 1.
The output of our attention layer at the n-th position is computed as:

βn = W2 · ReLU (W1γn + b1) + b2. (11)

Here W1,W2, b1, b2 are two fixed d× d matrices and two fixed d-dimensional vectors. Note that an equality
ReLU(x) = y is expressible in (R,+, <) via:

(x < 0 → y = 0) ∧ (x ≥ 0 → y = x).

Hence, (11) where components of βn and γn are treated as variables, is expressible in (R,+, <). Using this,
we define Ψ as follows. We write ∃(βn)1∃(βn)2 . . . ∃(βn)d such that the formula, expressing equality (11),
is true. We also add a condition that in the output distribution of our transformer, obtain from the vector
βn = ((βn)1, . . . , (βn)d)), the token 1 has the maximal probability. This can be written as linear inequalities
of the form (Wβn)1 > (Wβn)x for x ∈ V \ {1}, where W ∈ RV×d is the output distribution matrix of our
transformer. Finally, we eliminate quantifiers to obtain the required formula Ψ.

We now turn Ψ into Φ with the properties, stated in the lemma. The vector γn0 expresses as follows:

γn = WOh
(1)
n + αn =

n∑
i=1

exp{Lin}
(
αn + WOV

(1)αi

)
n∑

i=1

exp{Lin}

The term in the numerator, corresponding to i = n, is a vector θn = exp{Lnn}
(
αn + WOV

(1)αn

)
∈ Rd,

not depending on x ∈ {0, 1}n−1 (recall that the input in the last token is fixed to 0). Likewise, the term
in the denominator for i = n is a number ρn ∈ R, not depending on x ∈ {0, 1}n−1. In turn, for every
i = 1, . . . , n− 1, the i-th term in the sum of the denominator is a vector:

exp{Lin}
(
αn + WOV

(1)αi

)
= exp{⟨K(1)αi, Q

(1)αn⟩}
(
αn + WOV

(1)αi

)
= exp{⟨K(1) · E(xi, i, n), Q(1) · E(0, n, n)⟩}

(
E(0, n, n) + WOV

(1)E(xi, i, n)
)
,

determined just by i, n and the input bit xi. Hence, it can be written as (1 − xi)θ
0
in + xiθ

1
in for some

θ0in, θ
1
in ∈ Rd. Similarly, the i-th term of the sum in the denominator, for i = 1, . . . , n− 1, can be written as

(1 − xi)ρ
0
in + xiρ

1
in for some ρ0in, ρ

1
in ∈ R. Overall, we obtain:

γn =

θn +
n−1∑
i=1

((1 − xi)θ
0
in + xiθ

1
in)

ρn +
n−1∑
i=1

((1 − xi)ρ0in + xiρ1in)

=


l1(x)
l2(x)

...
ld(x)

 /l0(x),

where l0, l1, . . . , ld are some affine functions in x = (x1, . . . , xn−1). To obtain Φ, we introduce d+ 1 variables
τ0, . . . , τd, and replace (γn)i with τi/τ0 for i = 1, . . . , d in Ψ. All atomic formulas in Ψ will be linear
inequalities/equalities of the form:

c1τ1/τ0 + . . . + cdτd/τ0 ≥ / = c0.

To obtain Φ, we multiply all these atomic formulas by τ0, obtaining linear expressions of the form:

c1τ1 + . . . + cdτd ≥ / = c0τ0.

Note that we are only care about the cases when τ0 is strictly positive, because in the statement of the lemma,

we substitute τ0 with l0 =
n∑

i=1

exp{Lin}, taking strictly positive value for every x ∈ {0, 1}n−1. Hence, under

for this kind of substitutions, the multiplication by τ0 gives an equivalent formula.

7

We finish the proof of the theorem. Let us call an edge of the (n − 1)-dimensional Boolean hypercube
sensitive if f0

n takes different values on its ends. The average sensitivity of f0
n is twice the number of sensitive

edges, divided by 2n (the factor of 2 appears because in the formula for average sensitivity (10), every sensitive
edge is counted twice). In turn, the value of f0

n is determined by the value of Φ(l0(x), . . . , ld(x)). The formula
Φ is quantifier-free, and there is some constant (independent on n) number of atomic sub-formulas. Each of
these atomic sub-formulas becomes a linear equality or inequality in x1, . . . , xn−1 when we substitute linear
functions l0(x), . . . , ld(x) in place of fresh variables of Φ. In order for an edge to be sensitive for f0

n, one of
these O(1) equalities or inequalities has to give different results on the ends of this edge. Geometrically, this
edge has to be cut by the hyperplane, defining a linear equality or inequality. It remains to use a result of
O’Neil (1971) that a hyperplane can cut at most O(

√
n2n) edges of a hypercube.

We still require some clarification because O’Neil assumes that a hyperplane cuts an edge if goes strictly
between its endpoints, while in our setting, an edge can be sensitive also if a hyperplane passes through one
of the endpoints (but not through the other). However, one can easily deduce from the O’Neil’s result that a
hyperplane can cut at most O(

√
n2n) edges including non-strict cutting. Indeed, we can move a hyperplane

slightly towards a hyperspace with a at least half of non-strictly cut edges. The resulting hyperplane will
strictly cut at least half of the edges that were cut (possibly, non-stricty) by the initial hyperplane.

Corollary 1. No 1-layer 1-head transformer computes PARITY.

The upper bound on sensitivity in Theorem 1 is tight as there exists a sequence of Boolean functions,
having average sensitivity Ω(

√
n) and computable by a 1-layer 1-head transformer. For instance, this holds

for the sequence of majority functions, {majn}n∈N, where

majn(x1, . . . , xn) =

{
1 x1 + . . . + xn > n/2,

0 otherwise.

Almost all inputs to majn have 0 sensitivity, except of Ω(2n/
√
n) inputs from 2 adjacent layers of the Boolean

cube (where majn changes its value) that all have sensitivity Ω(n). This implies that as(majn) = Ω(
√
n). On

the other hand, a 1-layer 1-head transformer is able to compute this function by computing the expression:
x1+...+xn

n − 1
2n − 1

2 , where the first term comes from the average of the input bits with uniform attention
weights, and the second term comes from the positional encoding. This quantity is positive for inputs with
value of majn equal to 1, and negative for inputs with value of majn equal to 0. It remains to put this
quantity in the output distribution to the token 1, and minus this quantity to the token 0.

4 A New Transformer for Parity

We require the following fact (a generalization of Faulhaber’s formulas to real powers), proved in Appendix
for completeness.

Lemma 2. For α ∈ [5, 100], and n ∈ N, we have 1α + . . . + nα = nα+1

α+1 + nα

2 + αnα−1

12 + O(nα−2).

We now establish our main result of this section.

Theorem 2. Both in the full attention and the causally-masked attention models, there is a 4-layer trans-
former for PARITY with a standard-form input embedding, whose positional encoding is length-independent
and polynomially bounded (the latter meaning that the l∞-norm of the positional encoding in position i is
bounded by some polynomial in i).

Proof. We will need to compute attention just in the last token, from the rest of the tokens we need just
positional encoding and input bits. Thus, our construction will work both in the full attention and causally-
masked attention models.

Let x1x2 . . . xn ∈ {0, 1}n be the input word and let Σ = x1 + . . .+ xn. Let us give a proof assuming that
1 ≤ Σ ≤ cn for some universal constant c > 0 to be defined later. Under this assumption, we will require
just 3 layers.

8

Our general plan is to use attention to obtain the following value at some point:

z =

n∑
i=1

eLi,n(−1)i/

(
n∑

i=1

eLi,n

)
,

and a guarantee that a) Li,n is maximized at the position i = Σ; b) LΣ,n is much larger than Lj,n whenever
j ̸= Σ—larger enough to guarantee that z is positive if Σ is even and negative otherwise.

At the first layer, we compute the weighted sum of inputs bits, where the weight of the positions with 1
is 1, and the weight of the positions with 0 is α/n, for some constant α ∈ (0, 1) to be specified later. Indeed,
we can have lnn at position n from the positional encoding. Thus, we can get attention weights of the
form Li,n = (− ln(n) + δ)(1 − xi), where δ is such that eδ = α. This will allow us to compute the following
expression in the first layer:

γ =
10Σ

Σ + (α/n)(n− Σ)
=

10

1 + ρ
, where ρ = α(1/Σ − 1/n).

Note that 0 ≤ ρ ≤ α < 1, meaning that 5 ≤ γ ≤ 10
At the second layer, using the positional encoding i 7→ (ln i, i10), and the already computed value of γ,

we can compute the following expression:

Γ =
1γ · 110 + . . . + nγ · n10

1γ + . . . + nγ

(using attention weights Li,n = ln(i) · γ).

Lemma 3.

Γ = τn · f(ρ) ·
(

1 + O

(
ρ

n2
+

1

n3

))
,

where τn = n10
(
1 + 5

n − 5
3n2

)
and f(ρ) = 11+ρ

21+11·ρ .

Proof. Elaborating on the expression for Γ with the use of Lemma 2, since γ, γ + 11 ∈ [5, 100], we get:

Γ =

nγ+11

γ+11

(
1 + γ+11

2n + (γ+11)(γ+10)
12n2 + O

(
1
n3

))
nγ+1

γ+1

(
1 + γ+1

2n + (γ+1)γ
12n2 + O

(
1
n3

))
= n10 · γ + 1

γ + 11
·

(
1 + γ+11

2n + (γ+11)(γ+10)
12n2 + O

(
1
n3

))(
1 + γ+1

2n + (γ+1)γ
12n2 + O

(
1
n3

)) .

Observe that γ+1
γ+11 =

10
1+ρ+1
10

1+ρ+11
= 11+ρ

21+11ρ = f(ρ). Let us now work separately with the fraction in the last

9

expression.(
1 + γ+11

2n + (γ+11)(γ+10)
12n2 + O

(
1
n3

))(
1 + γ+1

2n + (γ+1)γ
12n2 + O

(
1
n3

)) =

(
1 +

γ + 11

2n
+

(γ + 11)(γ + 10)

12n2
+ O

(
1

n3

))
·

(
1 − γ + 1

2n
− (γ + 1)γ

12n2
+

(γ + 1)2

4n2
+ O

(
1

n3

))
= 1 +

5

n
+

1

12n2

(
(γ + 11)(γ + 10) − 3(γ + 1)(γ + 11) − (γ + 1)γ + 3(γ + 1)2

)
+ O

(
1

n3

)
= 1 +

5

n
+

80 − 10γ

12n2
+ O

(
1

n3

)
= 1 +

5

n
+

80 − 100
1+ρ

12n2
+ O

(
1

n3

)
= 1 +

5

n
+

80 − 100 + O(ρ)

12n2
+ O

(
1

n3

)
= 1 +

5

n
− 5

3n2
+ O

(
ρ

n2
+

1

n3

)
=

(
1 +

5

n
− 5

3n2

)(
1 + O

(
ρ

n2
+

1

n3

))
,

and the lemma follows.

Lemma 4. Let f(ρ) = 11+ρ
21+11·ρ be the function from Lemma 3. For i ∈ {1, . . . , n}, define

Wi = − (f(ρ) − f(0) − f ′(0) · α(1/i− 1/n))
2
.

There for all small enough α ∈ (0, 1), for all n and Σ ∈ {1, 2, . . . , n}, we have:

� WΣ ≥ −O(α4/Σ4);

� Wi ≤ −Ω
(
α2(1/i− 1/Σ)2

)
for all i ̸= Σ.

Proof. The function f(ρ) is infinitely differentiable at (−1,+∞), meaning that

f(ρ) = f(0) + f ′(0)ρ + O(ρ2) as ρ → 0.

Importantly, f ′(0) ̸= 0 as a direct calculation shows that f ′(0) = −100/441. Recall that ρ = α(1/Σ−1/n) ≤
α/Σ). Thus, WΣ = −(O(ρ2))2 = −O(α4/Σ4). In turn, for any i ̸= Σ, we obtain:

−Wi = −
(
f ′(0)(

α

Σ
− α

i
) + O(α2/Σ2)

)2
= −

(
Ω(α(1/i− 1/Σ)) + O(α2/Σ2)

)2
.

For small enough α, the term Ω(α(1/i − 1/Σ)) = Ω(α/Σ2) dominates the O(α2/Σ2) term, and the lemma
follows.

Our plan now is to devise, at the third layer, attention weights Li,n that are proportional to Wi, multiplied
by a large factor (so that attention will be mostly concentrated at the position i = Σ).

Note that
Wi = −(f(ρ) + C/i + An)2

for some absolute constant C and some expression An, depending only on n. Elaborating on this further,
we get:

Wi = −2f(ρ) · (C/i) − (C/i)2 − 2An · (C/i) + Bn,ρ

for some expression Bn,ρ that does not depend on i.
We will get attention weights that are very close to this expression without Bn,ρ, multiplied by the factor

τn = n10
(
1 + 5

n − 5
3n2

)
from Lemma 3:

L′
i,n = τn(Wi −Bn,ρ) = τn(−2f(ρ) · (C/i) − (C/i)2 − 2An · (C/i))

= −2τn · f(ρ) · (C/i) − τn(C/i)2 − 2τnAn · (C/i).

10

Will not be able to get attention weights exactly L′
i,n in the dot-product attention. The problem is with

the term τnf(ρ) which is not yet computed. However, at the n-th position we have computed Γ, which, by
Lemma 3, satisfies Γ = τn · f(ρ) · (1 +O(ρ

n2 + 1
n3)) and thus is really close to τn · f(ρ). In turn, there will be

no problem with terms τn(C/i)2 and 2τnAn · (C/i) as these can be obtained from the dot-product attention
using the positional encoding i 7→ (1/i, 1/i2, τi, τiAi). That is, our attention weights at the third layer will
be:

Li,n = −2Γ · (C/i) − τn(C/i)2 − 2τnAn · (C/i).

Recall that we assume that Σ ≤ cn for some absolute constant C > 0 to be chosen later. To finish the
proof, we just need to show

Lemma 5. There exist α > 0, c > 0 such that for all large enough n and all Σ, we have that LΣ,n ≥
Li,n + Ω(n6) for all i ̸= Σ.

Proof. Note that

Li,n = −2τn · f(ρ)(1 + O(ρ/n2 + 1/n3)) · (C/i) − τn(C/i)2 − 2τnAn · (C/i)

= L′
i,n + O(τn ·

(
ρ

n2 · i
+

1

n3i

)
) = τn(Wi −Bn,ρ) + O(τn ·

(
ρ

n2 · i
+

1

n3i

)
).

By Lemma 4, for all α > 0 small enough we get:

LΣ,n ≥ τnBn,ρ −O(τnα
4/Σ4) + O(τn ·

(
ρ

n2 · Σ
+

1

n3Σ

)
) = τnBn,ρ −O(τnE1) + O(τnE2), (12)

Li,n ≤ τnBn,ρ − Ω(τn
α2(i− Σ)2

i2Σ2
) + O(τn ·

(
ρ

n2 · i
+

1

n3i

)
) = τnBn,ρ − Ω(τnE3) + O(τnE4). (13)

We show that by taking α, c to be small enough, we can make E3/E1, E3/E2, E3/E4 arbitrarily large.
This will imply that LΣ,n is larger by at least Ω(τnE3) = Ω((1/Σ − 1/i)2τn) = Ω(τn/Σ4) = Ω(n6), as
required.

We first fix α so that E3 is any given constant time larger than E1. This is possible because E3 is at
least Ω(α2/Σ4) while E1 = O(α4/Σ4).

We now consider α as fixed. Then E3 = Ω(1/Σ4). In turn, E2 = O(
(

ρ
n2·Σ + 1

n3Σ

)
) = O(1/(n2Σ2)) (recall

that ρ ≤ α/Σ = O(1/Σ)). Thus, E3/E1 = Ω(n2/Σ2). Choosing c in Σ ≤ cn small enough makes the fraction
E3/E1 arbitrarily large.

Likewise, considering E3/E4, since E4 = O(
(

ρ
n2·i + 1

n3i

)
) = O(1/n2Σi) as ρ = O(1/Σ), we get up to a

fixed constant factor:

E3/E4 ≥ ((i− Σ)2/(i2Σ2)/(1/(n2Σi)) = (i− Σ)2 · n
2

Σi
≥ n/Σ,

where the latter is bacause (i− Σ)2 ≥ 1, n/i ≥ 1. Again, by choosing c sufficiently small, we can make this
fraction arbitrarily large.

Hence, the maximum of Li,n is achieved at i = Σ, with all the other values being Ω(n6) smaller. We then
are able to compute the expression:

z =

n∑
i=1

eLi,n(−1)i/

(
n∑

i=1

eLi,n

)
,

which will be, say, 0.1-close to (−1)Σ. In particular, it will be positive for even Σ and negative for odd Σ.
Thus, in the output distribution, it remains to put value z to the token 0, and value −z to the token 1.

Finally, we explain how to get rid of the assumption 0 < Σ ≤ cn for some small constant c > 0. We
take an even integral number M > 2/c. Given an input x ∈ {0, 1}n, in the first layer we compute strings

11

x0, . . . , xM−1, where xr coincides with x on positions i with i ≡ r (mod M) and is equal to 0 elsewhere,
except of the position r + 1 where it has 1. Thus, we have the following expressions for the bits of xr:

xr
i = ReLU

(
xi + I{i ≡ r (mod M)} − 1

)
+ I{i = r + 1},

which can be computed via FFNs of the first layer (indicators can be taken from the positional encoding).
Note that PARITY (x) = PARITY (x0) ⊕ . . . ⊕ PARITY (xM−1) because M is even. Moreover, for each
r = 0, . . . ,M − 1, the number of 1s in xr is at least 1 and at most 1 +n/M < cn. Hence, in the next 3 layers
we can compute the parities of x0, . . . , xM−1 in parallel, using M attention heads and the construction above.
More precisely, we can compute M numbers z0, . . . , zM−1 such that zr is ϵ-close to 1 if PARITY (xr) = 0,
and ϵ-close to −1 if PARITY (xr) = 1 (here ϵ > 0 can be made arbitrarily small if n is large enough). Thus,
the parity of x will be 0 if and only if there is an even number of numbers close to −1 among z0, . . . , zM−1. In
the FFN of the final layer, it now suffices to sum up expressions of the form ReLU(−z0−. . .−zM−1−M+0.1)
and all the similar ones where the number of minuses before zr’s is even. This sum will be at least some
positive constant if the parity of x is 0, and 0 otherwise.

References

Angluin, D., Chiang, D., and Yang, A. (2023). Masked hard-attention transformers and Boolean RASP
recognize exactly the star-free languages. CoRR, abs/2310.13897.

Barcelo, P., Kozachinskiy, A., Lin, A. W., and Podolskii, V. (2023). Logical languages accepted by trans-
former encoders with hard attention. In The Twelfth International Conference on Learning Representa-
tions.

Barcelo, P., Kozachinskiy, A., and Steifer, T. (2025). Ehrenfeucht-haussler rank and chain of thought. In
Proceedings of the 42nd International Conference on Machine Learning, volume 267, pages 2968–2977.
PMLR.

Bavandpour, A. A., Huang, X., Rofin, M., and Hahn, M. (2025). Lower bounds for chain-of-thought reasoning
in hard-attention transformers. In Forty-second International Conference on Machine Learning.

Bhattamishra, S., Ahuja, K., and Goyal, N. (2020). On the ability and limitations of transformers to
recognize formal languages. In Proceedings of the 2020 Conference on Empirical Methods in Natural
Language Processing (EMNLP), pages 7096–7116.

Chen, L., Peng, B., and Wu, H. (2024). Theoretical limitations of multi-layer transformer. arXiv preprint
arXiv:2412.02975.

Chiang, D. and Cholak, P. (2022). Overcoming a theoretical limitation of self-attention. In Proceedings of
the 60th Annual Meeting of the Association for Computational Linguistics.

Chiang, D., Cholak, P., and Pillay, A. (2023). Tighter bounds on the expressivity of transformer encoders.
In Proceedings of the 40th International Conference on Machine Learning (ICML), pages 5544–5562.

Feng, G. and Chen, Y. (2024). How far can transformers reason? the globality barrier and inductive
scratchpad. In NeurIPS 2024.

Ferrante, J. and Rackoff, C. (1975). A decision procedure for the first order theory of real addition with
order. SIAM Journal on Computing, 4(1):69–76.

Furst, M., Saxe, J. B., and Sipser, M. (1984). Parity, circuits, and the polynomial-time hierarchy. Mathe-
matical systems theory, 17(1):13–27.

12

Hahn, M. (2020). Theoretical limitations of self-attention in neural sequence models. Transactions of the
Association for Computational Linguistics, 8:156–171.

Hahn, M. and Rofin, M. (2024). Why are sensitive functions hard for transformers? arXiv preprint
arXiv:2402.09963.

Hao, Y., Angluin, D., and Frank, R. (2022). Formal language recognition by hard attention transformers:
Perspectives from circuit complexity. Transactions of the Association for Computational Linguistics,
10:800–810.

Khrapchenko, V. M. (1971). Complexity of the realization of a linear function in the class of π-circuits.
Matematicheskie Zametki, 9(1):35–40.

Kozachinskiy, A. and Steifer, T. (2025). A completely uniform transformer for parity. arXiv preprint
arXiv:2501.02535.

Kozachinskiy, A., Urrutia, F., Jimenez, H., Steifer, T., et al. (2025). Strassen attention: Unlocking compo-
sitional abilities in transformers based on a new lower bound method. arXiv preprint arXiv:2501.19215.

Liu, Z., Wang, H., and Ma, T. (2024). Chain of thought empowers transformers to solve inherently serial
problems. In ICLR 2024.

Merrill, W. and Sabharwal, A. (2023). The parallelism tradeoff: Limitations of log-precision transformers.
Transactions of the Association for Computational Linguistics, 11:531–545.

Merrill, W. and Sabharwal, A. (2024). The expressive power of transformers with chain of thought. arXiv
preprint arXiv:2310.07923.

Merrill, W., Sabharwal, A., and Smith, N. A. (2022). Saturated transformers are constant-depth threshold
circuits. Transactions of the Association for Computational Linguistics, 10:843–856.

O’Neil, P. E. (1971). Hyperplane cuts of an n-cube. Discrete Mathematics, 1(2):193–195.

Regev, O. (2009). On lattices, learning with errors, random linear codes, and cryptography. Journal of the
ACM (JACM), 56(6):1–40.

Sanford, C., Hsu, D. J., and Telgarsky, M. (2023). Representational strengths and limitations of transformers.
Advances in Neural Information Processing Systems, 36:36677–36707.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., Kaiser, L., and Polosukhin, I.
(2017). Attention is all you need. Advances in neural information processing systems, 30.

Wei, J. et al. (2022). Chain-of-thought prompting elicits reasoning in large language models. In NeurIPS
2022.

Yang, A., Chiang, D., and Angluin, D. (2024a). Masked hard-attention transformers recognize exactly the
star-free languages. In NeurIPS 2024.

Yang, A., Strobl, L., Chiang, D., and Angluin, D. (2024b). Simulating hard attention using soft attention.
arXiv preprint arXiv:2412.09925.

Yang, A., Watson, C., Xue, A., Bhattamishra, S., Llarena, J., Merrill, W., Ferreira, E. D. S., Svete, A., and
Chiang, D. (2025). The transformer cookbook. arXiv preprint arXiv:2510.00368.

13

A Proof of Lemma 6

The proof is via a series of lemmas.

Lemma 6. For α ∈ [0, 100], and n ∈ N, we have:

1α + . . . + nα =
nα+1

α + 1
+ O(nα).

Proof. Observe that:

nα+1

α + 1
=

n∫
0

xαdx ≤ 1α + . . . + nα ≤
n+1∫
1

xαdx ≤ (n + 1)α+1

α + 1

(using monotonicity of the function under integral since α ≥ 0). It remains to observe that

(n + 1)α+1 − nα+1 = nα+1

((
1 +

1

n

)α+1

− 1

)
= nα+1 ·

(
α + 1

n
+ O(1/n2)

)
= O(nα).

Lemma 7. For α ∈ [2, 100], and n ∈ N, we have:

1α + . . . + nα =
nα+1

α + 1
+

nα

2
+ O(nα−1).

Proof. Observe that:

nα+1

α + 1
=

n∑
i=1

iα+1 − (i− 1)α+1

α + 1
=

n∑
i=1

iα+1 ·
(

1 −
(
1 − 1

i

)α+1
)

α + 1

=

n∑
i=1

iα+1
(

α+1
i − (α+1)α

2i2 + O
(

1
i3

))
α + 1

=

n∑
i=1

iα − α

2

n∑
i=1

iα−1 + O

(
n∑

i=1

iα−2

)

Using Lemma 6 for α− 1 and α− 2, we get:

1α + . . . + nα =
nα+1

α + 1
+

nα

2
+ O(nα−1),

as required.

We finally get to the proof of Lemma 2. Similarly to the previous proof, we get:

nα+1

α + 1
=

n∑
i=1

iα+1 ·
(

1 −
(
1 − 1

i

)α+1
)

α + 1

=

n∑
i=1

iα+1 ·
(

α+1
i − (α+1)α

2i2 + (α+1)α(α−1)
6i3 + O

(
1
i4

))
α + 1

= Sα − α

2
Sα−1 +

α(α− 1)

6
Sα−2 + O(Sα−3),

14

where Sβ = 1β + . . . + nβ . Using previous lemmas, we get:

Sα =
nα+1

α + 1
+

α

2
Sα−1 −

α(α− 1)

6
Sα−2 + O(Sα−3)

=
nα+1

α + 1
+

α

2

(
nα/α + nα−1/2 + O(nα−2)

)
− α(α− 1)

6
(nα−1/(α− 1) + O(nα−2)) + O(nα−2)

=
nα+1

α + 1
+

nα

2
+

αnα−1

12
+ O(nα−2).

15

	Introduction
	Transformers
	Sensitivity Lower Bound
	A New Transformer for Parity
	Proof of Lemma 6

